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Abstract

Multiple Model Adaptive Estimation is an effective method for reducing lag in virtual

environment displays. Lag in displays (the time from head motion to the appearance of

the proper image on the display) is a significant detriment to realism in virtual

envirnoments. Increasing the speed of the computers which control the virtual display is

not a final answer. No matter how fast the processors work, there will always be demands

to do more. Predicting angular head positions (look-angles) can reduce the lag by

allowing the computer to calculate the appropriate scene before it is needed on the display.

Single predictors cannot adequately cover the dynamic range of head motion. Using a

bank of three elemental filters, lag in head orientation can be significantly reduced when

compared to systems with no predictor or the single, nonadaptive Kalman filter predictor

proposed by Liang. Predictions lead to small overshoots when the angular velocity of the

head reverses direction, but the overshoot lasts for only one frame and is not significantly

larger than the nonadaptive predictor.



Reducing Lag in Virtual Displays
Using Multiple Model Adaptive Estimation

1. Introduction

Virtual environments have great potential as training aids. They allow training at

low cost and low risk. The effectiveness of this training is, in part, dependent on the

realism of the system. One of the major problems that decreases realism is lag [5]. Lag is

the time delay between the human input to a virtual environment and the response of the

environment [3]. When lag is present, the human operator will adapt his responses to try

to compensate for the lag. If the virtual environment is used for teaching skills, the

student will learn based on the presence of artificial lag. When the student moves to an

actual system, with different lag characteristics, some of the techniques and strategies

developed in the virtual environment may not successfully transfer, making the virtual

environment training less useful [9]. There have been many efforts to understand and

overcome lag [5]. Still, the problem persists.

One approach to solving the problem of lag in visual displays is to predict where

the human subject will be looking (look-angle) some short time in the future, matched to

the computational lag required for rendering the scene, typically 100 msec to 200 msec for

our research computational resources and those envisioned for virtual environment
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simulators which will be fielded in the near future. This information would allow the

computer that generates images to complete all necessary operations and store the

appropriate graphics in a buffer before it is actually needed, to render the scene at the

predicted look-angle and finish that process by the time the subject's head actually points

in that direction. To make an accurate prediction, a designer needs a model of human

head motion. A single model cannot describe head motion characteristics because they

cover such a broad range, from staring to rapid tracking movements to chaotic motion

when a subject is attempting to acquire a new target or threat [9]. This thesis will use

multiple models to characterize head motion. Specifically, it will use multiple model

adaptive estimation (MMAE) to predict look-angle, adapting to the changing

characteristics of head motion (angular velocity or angular acceleration) in a real-world

flight control environment. This is intended to address the shortcomings of nonadaptive

predictors that have been developed in the past [10,14].

1.1 Assumptions/Restrictions

The following is a list of assumptions made for this research:

1. The specific aim of this research is to predict pilot head orientation 100 msec to

200 msec into the future during flight simulation. The prediction time is driven by two

factors. First, research [14] shows lag varies from 85 msec to 160 msec depending on

factors such as sample rate and communications schemes with the head-position tracker.

Second, the system developed by previous researchers [21, 24] runs at 10 Hz, making

integer multiples of 100 millisecond intervals a natural choice.

1-2



2. Only head angular orientation will be considered. Translational motion will not

be measured or predicted. In flight the dominant motion of a pilot's head is angular.

3. There is no reliable "truth model" [4,9] of head motion. That is, no

mathematical model exists that can accurately predict look-angles. This precludes testing

a proposed filter design against an accurately simulated head motion from such a

validated "truth model", and simply differencing estimates and "true" values to assess the

errors committed by the filter. Instead, models will be tested against a cross-section of

empirical data.

4. Gross tracking motions are made with the head. The eyes are used for fine

tracking. This research will not deal with eye motion.

1.2 Background

The Air Force has long been involved in flight simulators. They allow training in

situations that are too dangerous to practice in actual flight. They are also cheaper and

allow flight maneuvers to be isolated and repeated more quickly. Virtual reality flight

simulators are a natural extension of present systems. Their potential advantages include

lower cost (and thus more widespread availability than conventional half-dome simulators)

and greater flexibility. Presently, their primary drawback is that they are less realistic than

the more conventional flight simulators.

The Air Force is heavily involved in trying to improve the realism of virtual

environments. The principle motivation for the research is the need for effective, low-

cost, safe training aids. As part of this effort, the Air Force is researching ways to reduce

or eliminate the effect of lag by predicting look-angles. Overcoming lag will also have
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impact in areas beyond virtual reality, such as telerobotics, head-slaved weapons and

distributed simulation (players in different geographical locations simultaneously

participating in a real-time simulation) [2, 25].

Perhaps the most obvious way to reduce lag is to increase the speed of required

computations. Hardware improvements alone cannot solve the problem [14]. Sensor

response time, transmission time, and computational overhead involved in image

management all contribute to lag. As computer speed increases, so will the demand for

more realistic graphics and other tasks. Faster computers may reduce lag, but they will

not eliminate the problem.

1.3 Summary of Current Knowledge

As previously mentioned, large amounts of research have focused on the lag

problem. This summary will cover two categories; causes and effects of lag and

techniques for predicting look-angle.

Lag in virtual displays has been blamed for many of the shortcomings of virtual

environments. Oman [22] showed that motion sickness and "simulator sickness" both

come from sensory conflict: when a subject's expectations for sensory signals do not

match actual signals. In 1993 Kozak [ 13] presented research that showed no learning

transfer from a virtual task to a real-world task. Kozak concluded virtual environments

must be more realistic for them to be effective training aids. Researchers agree [7,9,13]

that lag is a detriment to human performance in a virtual environment.
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Any effort to predict look-angles must start with modeling head motion.

Immediately, there are significant difficulties. Jagacinski [12] pointed out that when a

human is part of a closed loop system, the system can no longer be simply described with a

transfer function. McRuer [4,15] proposed a crossover model suggesting the human

compensates for other components of a closed-loop system to force the overall system to

respond as a first order system. This model assumes the operator of a manual control

system will maintain a high open-loop gain so the cross-over frequency remains just below

the 1800 phase lag frequency and a small phase margin is maintained. Further, the

crossover model uses linear describing functions [8] and, therefore, does not account for

non-linearities without approximation. This model does not consider operator learning

and time varying behavior.

Kleinman [4] proposed an optimal control model for human performance in a

closed loop. This model interprets human perception as a noisy measurement, response

time as a time delay, and imperfect response as noisy input. It further assumes that the

position data presented visually inherently gives an indication of velocity. The basic

premise is that the human operator in a tracking task operates as an LQG controller with a

particular choice of quadratic weighting matrices and under the constraint of having to

incorporate a predictor to compensate for a 0.2 second transport delay between visual

input and muscular output. The optimal model requires the inputs, performance criteria,

and measurements to be well described and the system being represented must be

linearized.
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Both the crossover and optimal control models are only accurate under very

restrictive conditions. They cannot be used to predict human motion in more general

settings than a specific tracking task.

Longinow [15] used a Radial Basis Function network (neural net) to predict head

position from 150 msec to 350 msec into the future. He chose the prediction lengths to

match expected near-term requirements for predicting look-angles. The best results came

from predicting over no more than 200 msec.

Liang [14] developed a Kalman filter estimator to predict head motion. Liang

modeled head motion as a first-order Gauss-Markov velocity process. The filter was used

to predict the motion of a pendulum. His research showed good results under these highly

restrictive test conditions. Friedman [10] used Kalman filtering in a virtual drumset to

synchronize the display of an actual drumstick with a virtual drumset. He used a non-

adaptive, constant-acceleration model to predict the position of the drumstick. During

periods of high acceleration the Kalman filter predictor showed overshoot. Friedman

concluded that overshoot was intrinsic to all prediction methods. However, he suggested

overshoot could be minimized by using more complex noise and dynamics models.

Friedman specifically suggested using MMvAE techniques.

O'Connor [21] began the study of MMAE applied to head motion. Russell [24]

followed O'Connor's work by designing and creating the structure for applying MMAE to

a virtual environment. Russell's emphasis was on the software aspects of the virtual

environment and his results on the effectiveness of MMAE for predicting head motion
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were inconclusive. This research continues his work, concentrating on using MMAE to

predict look-angles.

1.4 Objectives

The purpose of this research is to decrease lag effects in virtual displays by

predicting angular head motion. Specifically, MMAE techniques will be applied to predict

the look-angle 0.1 to 0.2 seconds into the future. This time interval was chosen for two

reasons. First, the majority of current research [5] deals with delays in this interval.

Second, the virtual environment being used in this research runs at a fixed rate of 10 Hz,

thus dictating steps of 0.1 seconds in readily implemented predictors. Several head motion

models will be investigated.

First-order Gauss Markov acceleration (FOGMA) model - This model assumes

that head motion angular acceleration is well-modeled as a first-order Gauss-Markov

process (the output of a first-order lag driven by white Gaussian noise); i.e. that the rate of

change in acceleration is a function of the current acceleration and white noise. The

FOGMA model is motivated by its successful use in describing airborne targets [6].

Tracking airborne targets is a common task for pilots. Russell's work used FOGMA

models [24]. This model has the form:

p=v

V =a (1.1)

1
a =--a+w

where:
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p = angular position

v = angular velocity

a = angular acceleration

w = zero-mean white Gaussian noise of strength Q

T - time constant of the first-order lag

Notice that as T goes to infinity, the FOGMA model becomes a constant acceleration

model (plus white noise for tuning and indicating the model is imperfect). Changing the

values of T and Q results in very different descriptions of motion.

First order Gauss Markov velocity (FOGMV) model: This model assumes that

angular velocity is well-modeled as a first-order Gauss-Markov process; i.e., that the rate

of change in velocity is a function of the current velocity and white noise:

p=V

1 (1.2)V€=--V+W

Notice here that as T goes to infinity, this becomes a constant velocity model (plus white

noise for tuning and indicating the model is imperfect). This model describes less

aggressive head motion. It was used by Liang [14] in the pendulum experiment mentioned

earlier. A drawback to this model is that it yields a zero-mean velocity, which may not be

very descriptive of head motion.

The final MMAE may use elemental filters from more than one of the types listed

above. For example, the FOGMV model may be best for slow motion and the FOGMA

best for rapid motion. The MIAE can use these different models in separate elemental

filters within its structure to form a single predictor.
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1.5 Methodology

Proposed predictors will be tested against measured look-angles. The measured

look-angle data is pilot head position as measured by an Ascension Bird [9] magnetic

tracker during a variety of fighter missions flown in a visual simulator. The look-angle

data was collected at 60 Hz and tracker specifications claim angle information is accurate

within 0.1 degrees [8]. At each sample period, the predictor will estimate what the look-

angle will be at future sample times. These predictions will be compared to the look-

angles actually measured at the future times. These comparisons will show the accuracy

of the predictions and will portray problems such as overshoot and oscillation.

Since Liang's filter is the best replicatable predictor available, it will serve as a

benchmark. The MIAE must outperform Liang's filter to justify its greater complexity

and computational demand. A second benchmark of performance will be the case of no

predictor in the loop at all, representative of many current implementations of virtual

environment simulators. Thus, MMAE predictor performance will be bracketted by

perfect (and unobtainable) prediction and no prediction, with a direct comparison to the

best results of a nonadaptive predictor (i.e., Liang's).

The MMAE will consist of 3 Kalman filter predictors. The look-angle data from

simulator missions is divided into three categories of head motion: slow (staring and fine

tracking), moderate (continuous target tracking), and fast (target reacquisition). Each

elemental filter will be tuned by adjusting time constants (r) and Q values for a specific

type of motion; slow, moderate and fast. Once the elemental filters are tuned, they will be
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combined into an MMAE. The MMAE will be tested against all categories of motion and

concatenated segments to display onsets of changing characteristics of head motion.

The MMAE algorithm was first developed by O'Connor [21]. The virtual display

was developed by Russell [24] on Silicon Graphics Incorporated (SGI) 4D and Reality

Engine workstations using C++ and Performer [26] library graphics support. The virtual

display allows researchers to see how different models and tuning affect lag and

overshoot. This simplifies the task of identifying potential filters and getting approximate

tunings, as well as allowing the assessment of the visual impact of ringing and other

phenomena (that might not be obvious simply from time histories of errors, or of error

statistics).

The visual display is generated in a PT-01 head-mounted display (HMD). The PT-

01 uses two 420x230 pixel Color Active Matrix Liquid Displays with a total field of view

of approximately 600 [23]. Look-angle is measured by a Polhemus Fastrack magnetic

tracker. The tracker has a resolution of 0.1 degrees and a static accuracy of 0.5 degrees

[26]. The maximum output rate is 60 samples per second. The Polhemus tracker consists

of a magnetic field transmitter and receiver. The receiver is attached to the HMD and

senses relative changes in the transmitted magnetic field whenever the HMD moves. This

change is translated into a unit vector, in Cartesian coordinates, which points in the

direction of HMD orientation. This unit vector is the only measurement available to the

MMAE.
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1.6 Text Overview

Chapter 2 introduces the theory of the Kalman filter and MMAE. Chapter 3

discusses the dynamics and measurement models in detail and presents the overall tracking

algorithms. Chapter 4 presents the results of testing the elemental filters based on the

various models, and of MMAE algorithms composed of such elemental filters. Chapter 5

contains conclusions and gives recommendations for further research.

1.7 Summary

This chapter introduced the problem of lag in virtual displays and motivated the

use of MMAE to predict head motion. It gave a brief overview of the current research in

lag and outlined the direction of this thesis effort.
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2. Theory

The purpose of this chapter is to introduce the concepts of Kalman filtering and

Multiple Model Adaptive Estimation (MMAE). A general understanding of these

concepts is essential to the development of this thesis. Only the motivating features and

implementable results of these two estimation techniques are presented here. Full

mathematical developments can be found in the references cited [16,17]. The more

knowledgeable reader may skip this section.

2.1 The Kalman Filter

The Kalman filter provides the optimal estimate of states of a linear dynamic

system when certain conditions are met. The full derivation of the Kalman filter can be

found in [16]. This section covers the assumptions and the update and propagation

equations of the Kalman filter.

The Kalman filter provides an optimal state estimate for linear systems driven by

white, Gaussian noise. The filter uses measurements corrupted by noise, and internal

models of the dynamics of the system and the measuring devices, to estimate the system

state. Consider a system described by

x (t) = F(t)x(t) + B(t)u(t) + G(t)w(t) (2.1)
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having available measurements

z(ti) = H(ti)x(ti) + v(ti) (2.2)

where

x = state
u = input

w = zero-mean, white Gaussian noise of strength Q: E{w(t)wT(t + "t)} -Q(t)= ()
z = noise corrupted measurement
v = white Gaussian noise with a covariance of R(ti): E{v(ti)vT (tj)} = R(ti) ij

The equivalent discrete-time system for this system model [17] can be written as

x(ti+1) = (I(ti+l,ti)x(ti) + Bd(ti)u(ti) + Gd(ti)wd(ti) (2.3)

where
(D(ti+,,ti) = state transition matrix such that

d-I*(t,ti) = F(t) c1(t,ti) anddt

(D(ti,ti) = I

Bd = equivalent discrete-time input matrix associated with B by

Bd(t) = t  I(ti+x,'tj)B(-c) dr
ft.

Gd = equivalent discrete-time noise distribution matrix, assumed to be I here
Qd = equivalent discrete-time covariance of the noise Wd such that

Qd(ti) = t+' ((ti 1,)G(t)Q(t)G T(t)D T(ti+l,,T) d-t
I t

i

For such a system, the state estimate is propagated between measurements by

x(ti+l-) = ((ti+l,ti)x(ti ) + Bd(ti)u(ti) (2.4)

P(ti'l-) = ID(ti+lti)P(ti+)DT(ti+l,ti) + Gd(ti)Qd(ti)Gd"T(ti) (2.5)

where
- state estimate

P = covariance of

The state estimate is updated with measurements by
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A(ti) = H(ti)P(ti-)HT(ti) + R(ti) (2.6)

K(t) = P(ti-)HT(t)A'l(ti) (2.7)
A +) A^t-)i A t_)

x(ti =x + K(ti) [z(ti) - H(ti)x(tfl] (2.8)

P(ti+) = P(t-) - K(ti)H(t)P(ti-) (2.9)

where
H = measurement matrix
R = covariance of the measurement noise
z = measurement

The assumptions of a linear system driven by white, Gaussian noise do not hold for all

physical problems. In such cases the output of the Kalman filter isn't optimal and

adjustments may be necessary to achieve a sufficiently accurate estimate.

2.2 Multiple Model Adaptive Estimation

The Kalman filter's ability to produce accurate estimates of the true states of a

physical system is limited by the extent that its internal dynamics model, measurement

model, and assumed noise statistics adequately describe true system characteristics. This

implies that the parameters which describe the dynamic system (for example, the

coefficients of the system differential equations) must be correctly evaluated and

embedded in the filter model. Often, however, some of these parameters are unknown to

the designer and/or changing in time. One method of dealing with this situation is through

Multiple Model Adaptive Estimation (MMAE) [18].

As in the development presented in [18], consider the vector a containing all the

uncertain and/or dynamic parameters in a given system model. Note that, for this
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problem, uncertain parameters are confined to D and Qd Let this system model be

described by the first-order, linear, stochastic differential equation of the form:

x(ti+l) = (D(a)x(t) + Bd(a)u(ti) + Gd(a)wd(ti) (2.10)

with physically realizable, noise-corrupted, sampled-data measurements described by:

z(ti) = H(a)x(ti) + v(ti) (2.11)

where:

x(ti) = n-dimensional system state vector

u(ti) = deterministic control vector

wd(ti) = white gaussian vector dynamics driving noise of covariance Qd(a)
(assumed to be stationary)

z(ti) = m-dimensional measurement vector

v(ti) = discrete-time white gaussian measurement noise of covariance R(a)
(assumed to be stationary)

(D(a) = state transition matrix (assumed to be time-invariant)

Bd(a) = input matrix (time invariant)

Gd(a) = noise distribution matrix (time invariant)

H(a) = measurement matrix (time invariant)

Since a may assume a continuous range of values over the space of allowable parameters,

it is necessary, for tractability, to discretize a into a set of J finite vector values: a,, a2,

aj. A Multiple Model Adaptive Estimator consists of J independent Kalman filters, in

which the j-th filter is based on, and tuned to, the specific parameter set aj. Figure 2.1

shows a MMAE. These J filters form a bank of elemental filters which are processed in

parallel. Each elemental filter produces its own estimate of the true state, denoted j(ti),
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Kalman filter 1 x x
based on a,

z. Kalman filter 1x2
based on a2  

A

A x:~ r2

Kalman filter xj)
based on aj

ri Hypothesis P1

Conditional P2

Probability P-
Computation

Figure 2.1. Multiple Model Adaptive Estimation Algorithm

for the j-th hypothesized value of a. The residuals of all J elemental filters are then used to

calculate the probability that a assumes the value aj at time ti, for j = 1, 2, ... J.

This probability is called the "hypothesis conditional probability" and is denoted as pj(ti).

In essence, pj(ti) represents the probability of the j-th filter's system model being correct at

time t1 . Its computation will be shown subsequently.

The overall state estimation of MMAE, Xmne (t1), is the probabilistically weighted

average of the estimates of the elemental filters; that is [ 18]:

J

mmae (ti) = pj(ti)ij(ti) (2.12)
j=1

Equation (2.12) is valid for both ti (just before a measurement update) and ti+ (just after a

measurement update). This type of multiple model filtering algorithm is referred to as

Bayesian MMAE. Figure 2.1 illustrates the structure of the Bayesian MMAE.
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The hypothesis conditional probabilities pj(ti), j = 1, 2, ... , J , are calculated at each

sample time ti, by the recursive equation [18]:

fz(tj)a,Z(ti-j)(Zi I ak, Zi-1)" pk(ti-1)

pk(ti) -

fz(ti)la,Z(ti 1)(Zi I ai, Zi-1). pj(ti-1) (2.13)
j-1

where

1
fL(ti)a,Zlti. 1)(Zi I ak, Zi-1) = (2-.) 2 iAk(ti)I/ 2 exp{.}

{.} = {--12rkT(ti)Ak'l(ti)rk(ti) }

rk(ti) = z(ti) - Hk(ti)xk(ti)

Ak(ti) = Hk(ti)Pk(ti-) HkT(ti) + Rk(ti)

Pk(ti-) = k-th filter's computed state error covariance before the

measurement update at time ti is incorporated.

Note that the denominator of Equation (2.13) is the sum of the numerator terms for j = 1,

2, ... , J. This ensures that the sum of pj(ti) , j = 1, 2, ... , J , equals one.

Also note that the hypothesis conditional probabilities at time ti are functions of the

hypothesis conditional probabilities at time ti-1 . Due to the recursive nature of the

calculations, it is essential that an artificial lower bound be established for pj(ti) [18].

Without this lower bound, the hypothesis conditional probability of a filter with a totally
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invalid parameter set, aq, at some point in time may go to zero and remain zero for all

time: once pq(ti-1) reaches zero, pq(ti) and all subsequent pq would be zero. Thus the q-th

filter is essentially removed from the bank. Should the actual system change its

characteristics so that the true parameter set a matches aq at some future time, pq(ti)

would remain at zero and the MMAE would produce undesirable results.

It is also possible for a single filter in an MMAE to diverge, since each filter is

tuned for only a specific part of the system parameter space. Since the probability

weighting on each filter has an artificial lower bound, a divergent filter could drive the

entire MMAE divergent. Further, when the system actually moves into the portion of the

parameter space for which the now-divergent filter was designed, the filter doesn't know

the correct state and can't make accurate predictions. To avoid this problem, each filter is

given a divergence threshold. If the residuals of a filter exceed the threshold chosen by the

designer, the filter is declared divergent. The MMAE forms an estimate of the future state

based on the nondivergent filters, and it assigns those state values to the divergent filter to

"restart" it. The filter is then assigned a probability weighting equal to its lower bound

and returned to the normal MMAE process.

The residual of the j-th filter plays a major role in determining pj(ti). As evident

from Equation (2.13), the filter with the consistently smallest value of rjT(ti)Ajl(ti) rj(ti)

assumes the largest conditional hypothesis probability. Thus the hypothesis probability

algorithm is consistent with the heuristic intuition that the residuals of a well-matched

filter should be smaller (relative to the filter's internally computed residual covariance, Aj)

than the residuals of a miss-matched filter.
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The conditional covariance matrix, Pmmae(ti+), can be computed from [18]:

JPmme t+)= -"pj(ti )[Pj(t+)+ yj(t+)yT(t+)]

j=1 (2.14)

where

yt WD= i (ti ) - mmae (ti)

pj(ti) = j-th filter's conditional hypothesis probability

Pj(ti+) --j-th filter's state error covariance matrix after the measurement

is incorporated

In linear systems, the Pj(ti ) values for each of the elemental filters can be calculated a

priori, but Pmme(ti+) cannot. This is because actual measurements are required to

calculate pj(ti), A (ti ), and i mmae( ti+) . Note, however, that Equation (2.14) need not be

computed for online MMAE.

Finally, it should be noted that MMAE performance is generally degraded when

too much pseudonoise is added to the elemental filters for tuning purposes. This is due to

the fact that "correct" pj(ti) values are assigned when the residuals of filters based on

correct models look small relative to the filter-computed residual covariance, while the

residuals of filters based on "incorrect" models look large. The addition of pseudonoise

tends to blur the defining characteristics of the filter residuals, and distinguishing well-

matched filters from miss-matched filters becomes increasingly difficult.
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2.3 Summary

This chapter introduced the theory of the Kalman filter and the MMAE. The

Kalman filter provides optimal estimates when the system is linear, driven by white,

Gaussian noise and can be modeled exactly (with no uncertain parameters within the

model structure). The MMAE uses a bank of Kalman filters to overcome the inaccuracies

of presumed parameter values within models, by blending (through a probability-weighted

average) the estimates of Kalman filters using different hypothesized parameter values.
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3. Filter Models

3.1 Introduction

This chapter presents the dynamics models of the elemental Kalman filters used in

the MMvAE. Generally, for all the models used in this research the dynamics are expressed

as

i(t) = Fx(t) + Gw(t) (3.1)

The time notation is removed from F and G because they are constants; w(t) is stationary

and thus its strength matrix, Q, is also devoid of a time argument.

3.2 First-Order Gauss-Markov Acceleration (FOGMA) Model

Using the Kalman filter theory developed in Chapter 2, the FOGMA model was

derived by Millner [20], and adapted by Russell [24]. The FOGMA model has been used

successfully to track airborne targets [19]. Since tracking airborne targets is a common

pilot task, it is reasonable to expect a FOGMA model to predict pilot head motion

accurately. Russell's results are given here.

The dynamics are described in terms of postion, p, velocity, v, and acceleration, a,

by

p=v

a (3.2)
1

A -- a+w
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Here r is the first-order lag time coefficient, and the correlation time of head angular

acceleration. This is of the form of Equation (3.1), with the appropriate vectors and

matrices defined as

Px 0 0 0 1 0 0 0 0 0

py 0 0 0 0 1 0 0 0 0

p 0 0 0 0 0 1 0 0 0

Vx 0 0 0 0 0 0 1 0 0

x= vy F 0 0 0 0 0 0 0 1 0

Vz 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 -1 0 0

a 0 0 0 0 0 0 0 -1Y 0

a 0 0 0 0 0 0 0 0 -1

(3.3)

0 0 0

0 0 0

00 0 T

3-2 2

G=0 0 0 Q= 0 2(2 0

00 0 0 2(32
1 0 00 0

0 1 0

LO 0 1J

where 0 is the mean squared value of the acceleration vector components ax, ay, and az.

Converting Q into equivalent discrete-time [ 17] Qd yields
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qll 0 0 q 14  0 0 q 17  0 0

0 q11  0 0 q 14  0 0 q 17  0

0 0 q11  0 0 q 14  0 0 q 17

q 14  0 0 q 44  0 0 q 47  0 0

Qd= 0 q 14  0 0 q44 0 0 q47  0 (3.4)

0 0 q14  0 0 q44 0 0 q 47

q 17  0 0 q 47  0 0 q 77  0 0

0 q 17  0 0 q 47  0 0 q 77  0

0 0 q 17  0 0 q 47  0 0 q 77

where

qll -{2/3 92At3 - 2C2At2 - 4[,2At exp(-At/,t)] + 2,C3At - T4 exp(-2At/-t) + C
4 }

q14 = &'{tAt2 + 2[2At exp(-At/t)] + t3 -2_C exp(-At/t) - 292At + 3 exp(-2At/'t)}

q17 = 02{-2tAt exp(-At /t) + 2 - 2 exp(-2At /t) }

q44 = 2{2xAt - 3 2 + 4 2 exp(-At /t) - 2 exp(-2At /t)}

q47 = O2(,T - 2T exp(-At /T) + c exp(-2At /t)}

q77 - o2{1 - exp(-2At /t)}

= variance (and mean squared value) of acceleration

At = sample period

,- correlation time of angular head acceleration.

The state transition matrix (D is:
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1 0 0 At 0 0 016 0 0

o 1 0 0 At 0 0 016 0

0 0 1 0 0 At 0 0 0)16

0 0 0 1 0 0 046 0 0
D--0 0 0 0 1 0 0 4)46 0 (3.5)

0 0 0 0 0 1 0 0 046

0 0 0 0 0 0 0)66 0 0

0 0 0 0 0 0 0 )66 0

0 0 0 0 0 0 0 0 )66

where

)16 = [At - T(1- exp (-At /))]

)46 = T11- exp(-At Pt)]

)66 = exp(-At /T)

Notice that, as t approaches infinity (/t approaches zero), the FOGMA model

1
converges to a constant acceleration model, since a = -- a + w becomes A = 0 + w as T

"t

is allowed to become very large. The dynamics model is representative of constant

acceleration, with pseudonoise w added for tuning and "admitting" that a constant

acceleration model is not really a perfect model of the observed head motion. At the other

extreme, as T approaches zero, even a small acceleration results in a large jerk in the

opposite direction, and the acceleration becomes white noise in the limit as r approaches

0. Thus, the model converges to a constant velocity model, with pseudonoise added for

filter tuning; i.e., v = 0+ a, with a being zero-mean white Gaussian noise.

The values of Y and t for each filter can be adjusted by the designer to give the

best overall elemental filter performance for a particular type of head motion. The
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objective behind choosing t values is to discretize the parameter space so that an

acceptably accurate model is available for all head motions used by a pilot in flight

simulation while requiring only a small number of discrete parameter values. The a values

provide a measure of rms acceleration (or velocity) of the head, and also of the

inadequacies of each model. The value of a in each filter is most important in relation to

the a values of the other filters, and relative to the measurement noise covariance, R. In

this research a and t were adjusted for each filter by trial-and-error. One filter was tuned

for benign motion - staring and small, slow movements. The second filter was tuned for

moderate motion - tracking a slowly manuevering target. The final filter was tuned for

aggressive motion - reacquisition of a manuevering target. After each filter was tuned, the

three filters were put together into an MMAE algorithm. Further tuning was then

required to ensure the probability weight shifted to the correct elemental filter at the

appropriate time, i.e., as simulated head motion transitioned from benign to moderate to

aggressive motion, and back again. Actual values for a and r are given in Chapter 4.

3.3 First-Order Gauss-Markov Velocity (FOGMV) Model

As mentioned in Chapter 1, Liang used a single FOGMV model with some success

to predict head motion. Liang's design provides a benchmark to measure the effectiveness

of new designs. Therefore, it makes sense to experiment with the same model type he

used. There is no substantive data from actual head motion studies to support or discount

any specific type of model.

The dynamics of the FOGMV model are:
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p=V

1 V+ (3.6)

Here, T becomes the correlation time of the head angular velocity rather than angular

accleration as in the FOGMA model. Since acceleration is not considered in this model,

the state vector, x, could be reduced to six elements. However, to minimize the software

changes and to yield filters with the same state dimensionality (even if some components

are dummy variables only), the x vector remains nine elements and the acceleration terms

are simply zeroed out:

Px

Py

pz
Vx

x= Vy (3.7)

0

0
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0 0 0 1 0 0 0 0 0

0 0 00 1 0 0 0 0

0 00 0 1 0 1 0 0 0

10 0 0 -- 0 0 0 0 0
"r

F= 0 0 00 - 0 0 0 0 (3.8)

000 0 0 000
0 0 0 0 0 0 00 0

000 0 0 0 000

000 0 0 0 000

For the corresponding equivalent discrete-time model,

1 0 0 0I14 0 0 0 0 0

0 1 0 0 014  0 0 0 0

0 0 1 0 0 0D14 0 0 0

0 0 0 44 0 0 0 0 0

(= 0 0 0 0 044 0 0 0 0 (3.9)

0 0 0 0 0 044 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

where

0 14 = 4[1- exp(-At/tr)]

= 44 = exp(-At/-T)

3-7



qj, 0 0 q 14  0 0 0 0 0

0 q1I 0 0 q 14  0 0 0 0

0 0 q11  0 0 q14 0 0 0

q14  0 0 q44  0 0 0 0 0

Qd- 0 q 14  0 0 q4 0 0 0 0 (3.10)

0 0 q14  0 0 q44 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

where

qj, = {2"tAt - 3t2 + 4t2 exp(-At /t) - t 2 exp(-2At /'c)}

q14 = O'2{X - 2t exp(-At Pr) + t exp(-2At /t)}

q44 = &"{1 - exp(-2At/)}

and o& is now the variance (and mean squared value) of head angular velocity (versus

angular acceleration in the FOGMA model).

Notice that, as "r approaches infinity (1/t approaches zero), the FOGMV model

1
converges to a constant velocity model, since v = -- v + w becomes * =0+ w as t is

allowed to become very large. The dynamics model is representative of constant velocity,

with pseudonoise w added for tuning and "admitting" that a constant velocity model is not

really a perfect model of the observed head motion. At the other extreme, as t approaches

zero, even a small velocity results in a large acceleration in the opposite direction,and the

velocity process converges to white noise as r approaches 0; thus the model converges to

a constant position filter with pseudonoise: p = 0 + v with v being a zero-mean white
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noise. It is reasonable to assume the time constant -t for the FOGMV model will be longer

than for the corresponding FOGMA model, since velocity persists longer than

acceleration.

Liang calculated optimal values for Y and t by using a hill climbing algorithm to

minimize the cost function

n-k 3

Lk(O,t') =XX Ipj (m) -q(m) 1 (3.11)
j=1 m=1

where p is the predicted value of the unit vector (px , py , Pz ) which points in the same

direction as the position sensor, q is the measured value of that same unit vector (qx , qy,

qz ), k is the number of time steps into the future for which the prediction is being made,

p(m) is the m th component of the unit vector, and j is the current time step. Liang's

values for a 150 ms prediction period were c = 0.2 (radians/sec) 2 and t = 0.115 seconds.

These values were used as a starting point for design of the moderate motion filter. The

benign and reacquistion filters were developed to bracket the moderate filter. Specific

numerical values are given in Chapter 4.

3.4 Constant Position Model

During very benign motion, such as during instrument conditions when the pilot

tries to keep his head steady and change views by only moving his eyes, a constant

position model may most accurately describe head motion.

A constant-position filter is based on the dynamics model

p=O+w (3.12)
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If Q is finite, and the measurement noise covariance R = 0, the output of the filter will be

the same as the raw output of the position measuring device. If Q and R are both non-

zero, the filter will smooth the output of the measuring device at the cost of adding to lag

by the filter's computation time. The design philosophy for this filter is to use a very small

R value so the filter will closely track the measurements and adjust Q to draw MMAE

probability weighting when there is no motion and quickly give up weighting when motion

begins. A single constant-position filter will be used later in an MMAE with FOGMA

and/or FOGMV elemental filters. Actual tuning values are given in Chapter 4. As in the

previous section, the state dimension is kept at nine, but only the first three states are

actually estimated:

Px

Py
PI

0

x= 0 (3.13)

0

0

0

-0-

F =0 (3.14)
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1 0 0
010

001

000

G= 0 0 0 (3.15)

0 0 0

0 0 0

0 0 0

-0 0 0-

The dynamics noise strength matrix is described as:

Q11 0 0

Q = 0 Qu1 0 (3.16)

0 0 Q1a

or, in the equivalent discrete time form, the defining matrices are:

D -- 1 (3.17)

Q11At 0 0 0 0 0 0 0 O"

0 Q11 At 0 0 0 0 0 0 0

0 0 Q11At 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

Qd= 0 0 0 0 0 0 0 0 0 (3.18)
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0-
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3.5 Measurement Model

The Polhemus head-tracker describes the subject's head orientation with a unit

vector pointing in the same direction as the subject's head. All calculations in the MMAE

algorithm are done on in Cartesian coordinates. Once a prediction is made, the

coordinates are transformed to heading and pitch and output to the rendering software.

Each of the above models uses the same sampled-data measurement model:

z(ti) = Hx(ti) + v(ti) (3.19)

where

z = (zx, Z, Z z ) the unit vector which points in the same direction as the subject's head.

[1 0000000 0

H= 0 1 0 0 0 0 0 0 0 (3.20)

0 1 0 0 0 0 0

v = zero-mean, white Gaussian measurement noise with covariance

R= 0 RL

3.6 Summary

This chapter presented the dynamics and measurement models which will be used

in elemental Kalman filters of the MMAE. The MMAE may consist of three FOGMA

models, three FOGMV models or a combination of FOGMA, FOGMV and constant

position models.
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4. Performance Analysis

The results obtained from an MMAE using three elemental filters (a constant

position, a FOGMV and a FOGMA filter) clearly outperformed the single Kalman filter

predictor Liang proposed (12). This chapter will show the advantages and disadvantages

of several possible designs and cover the development of the final MMAE design.

Researchers at Armstrong Laboratories (8) collected head motion data, sampled at

60 Hz, from simulator missions flown by an experienced fighter pilot. The head

movements were categorized into seven groups (circular, hourglass, chaos, vertical,

horizonal, staring, and figure-eight), each group containing five sets of data. To form a

single, representative data set, displaying benign, moderate and aggressive motion, data

sets from the hourglass and chaos categories were concantenated. Unless otherwise

mentioned, the test runs in this chapter use this concantenated path, sampled at 10 Hz.

Appendix A shows the final design run against several other sets of motion data and

against the original concatenated path sampled at 20 Hz. The heading position, velocity

and acceleration for this original path are shown in Figure 4.1. Note that position is scaled

by a factor of 10 to allow it to be put on the same graph with velocity and data. The

vertical scale is in degrees * 10 for position, degrees/second for velocity and

degrees/second2 for acceleration. Further, note the difference in the vertical scales from

the top graph to the bottom graph. The first eight seconds are benign motion. Eight to 14

seconds is moderate motion and 19 to 25 seconds is reacquisition (or aggressive) motion.
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Two benchmarks were used to measure relative performance of designs. First,

MMAE predictor performance was compared to a system with no predictor. The no-

predictor system has a constant one-sample-period lag and no overshoot or ringing.

Second, the MMAE predictor was compared to Liang's nonadaptive FOGMV-model

predictor [12]. No single elemental filter tested in this research could significantly

outperform Liang's design. That is, any predictor which gave significantly less lag also

produced significantly more overshoot and/or ringing. Since the MMAE structure is more

complex than a nonadaptive filter, the MMAE must outperform it to make the extra

computational effort worthwhile. For this reason, the actual look-angle path (perfectly

known and with no lag, and thus the unachievable result of a "perfect" predictor), and the

two benchmarks for comparison given by the output of both the no-predictor system and
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Liang's nonadaptive predictor, are plotted with each proposed design. It is desired that

the MMAE performance fall between the "perfect prediction" case and the two

benchmarks, and as close to the "perfect prediction" case as possible.

4.1 Initial Design

Jim Russell [19] developed the virtual environment and MMAE software used in

this research. Figure 4.2 shows the performance of Russell's final MMAE design against

the standard concatenated path of head motion. Note that, in this and all other

performance plots the uppermost plot, corresponds to benign head motion, the middle plot

to moderate head motion, and the bottom plot to aggressive target-reacquisition motion of

a head (as seen in Figure 4.1). Since his focus was on creating the virtual environment, his

results basically show an untuned MMAE. Russell's design uses three FOGMA filters,

each with a different time constant (t) and noise rms value (a). This design was very

preliminary, and it is outperformed by Liang's nonadaptive filter, as seen in Figure 4.2. It

is important to note the characteristics of Liang's filter. Compared to no predictor, it

significantly reduces lag. Without a predictor, the system has a constant lag of 0.1

seconds. Liang's filter cuts the lag by a variable amount of time, at the expense of

overshoots whenever the path changes velocity quickly. The trade-off between reducing

lag and increasing overshoot is the dominant factor in designing a predictor.
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Figure 4.2
Russell's preliminary design.
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4.2 Design Approach

In this research, MMAEs were designed by tuning elemental filters for specific

types of motion (benign, moderate and reacquisition). The elemental filters were then

combined to form MMAEs. The individual filters were then further tuned to get the best

overall performance.

Although Liang empirically determined the measurement noise of his system to

have variance R = 0.001 degrees2, in this research predictors performed better with R -

0.0001 degrees2. This small value for R brought the updated look-angle estimate very

close to the measured value. This is notable because the measurements were thus declared

to be far more accurate than any sensor actually tested. Such a small value of R raises the

risk of introducing jitter from noisy measurements. The empirically observed variance of

the measurement noise varied greatly depending on the position of the transmitter and

receiver relative to each other and other electronic and metal objects in the laboratory. In

the final configuration, jitter was negligible, even with R= 0.0001 degrees2. A different

electromagnetic environment, or different look-angle measuring device, may demand a

different value for R.

The initial transient on all the filters is a result of the initial conditions, X0 and P0 .

The algorithm requires initial conditions, but quickly adjusts the state estimate and

covariance in response to measurements. The initial conditions were arbitrarily set,

resulting in a transient as the algorithm converged to the correct values. Since this initial

transient was not of substantial practical interest, all of the performance plots in this
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chapter start at 0.5 seconds into the simulation, after the initial transient effects have died

out.

4.3 Elemental FOGMA Filters

Individual FOGMA filters were tested over a range of time constants, r, mean

squared accelerations, 02, and measurement noise variances, R. Figure 4.3 shows a single

FOGMA filter with a -t = 10 seconds (the other parameter values are listed in the figure).

Recall from Chapter 3 that, for large values of t (such as r = 10 seconds), the FOGMA

model approaches a constant acceleration model. Figure 4.4 shows a single FOGMA filter

with c = 0.01 seconds. This filter approximates a constant velocity model. Comparing the

two FOGMA filters shows that the nearly-constant-acceleration model displays less lag

(see especially t = 2.0 through 2.5 seconds, t = 8.3 through 9.0 seconds) and generally

larger overshoots (particularly at t = 9.1, 13.2, 24.7 seconds) when compared to the

nearly-constant-velocity model. Since the nearly-constant-acceleration model expects any

acceleration to persist, it tends to yield position predictions that oscillate (or ring) about

the true measurement (t = 3.5 through 6.5 seconds, and t = 10.3 through 11.3 seconds)

during benign and moderate motion when acceleration actually decays rapidly. Figures

4.5 and 4.6 show models using the same a value as the previous two models and r values

between the nearly-constant-velocity and nearly-constant-acceleration values. As

expected, as t increases, the predictions tend to be more aggressive (make larger changes

from one time sample to the next). The filters with the larger t also have more ringing and
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Figure 4.4
Nearly-Constant-Velocity FOGMA.
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Figure 4.6
FOGMA with a mid-range time constant, x.
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Figures 4.7 and 4.8 show the effect of varying a while holding R and r constant.

Figure 4.7 shows the output of a filter with t = 1.0 second and a = 0.5 degrees/second2 .

Figure 4.8 uses the same filter except a is changed to 50.0 degrees/second 2. Compare

these figures with Figure 4.5 with -t = 1.0 second and a = 5.0 degrees/second2 . Clearly, as

a increases, the predictions get better. This is because the filter puts less relative weight

on the internal dynamics model and more on the look-angle measurement. A large a,

relative to R, results in the updated estimate, x(t ), closely matching z(ti). Thus, the

estimate for each period is propagated starting very close to the measurement made at the

last sample period. The danger in making a too large is that measurement noise will cause

erratic predictions (image jitter). In this research, proposed filters were tested in the

virtual environment mentioned earlier, and any that caused significant jitter were

eliminated. When filters are integrated into an MMAE, a may be further adjusted to cause

the proper shifting of probability weighting between filters.

In an attempt to reduce the lag further, the propagation equation for a single

sample period was changed from the standard equation:

x(ti+l) = (D x(t) (4-1)

to

x(ti+1) = (D2 x(t) (4-2)

Simply put, what would normally be the prediction for 2 sample periods into the future

becomes the prediction for a single sample period. A ",D Z, model will predict larger

changes in position between sample periods than a standard FOGMA model with the same

time constant. This approach is not physically motivated and could result in filter
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instability. Squaring •D is also somewhat arbitrary and easy to compute; a final design may

use LD appropriate for predicting over an interval of time other than two sample periods

(e.g., 1.5 or 1.6 sample periods) - whatever period of time that yielded the best

performance. Using (D2 is simply a convenient first attempt at further reducing lag. Figure

4.9 shows the result of using a single "D2 filter" with a state transition matrix D evaluated

for a time constant oft = 5 seconds. The performance is especially striking during

moderate levels of head motion (t = 8 through 14 seconds). Lag is almost completely

eliminated, and the overshoots are no greater than in Liang's filter. However, ringing

remains a significant problem (as seen during t = 13.0 through 13.6 seconds, t = 21.0

through 22.0 seconds, and t = 24.0 through 25.0 seconds).

4.4 Elemental FOGMV Filters

Figures 4.10 and 4.11 show extreme cases of very large and very small 't values

used in a FOGMV filter. In Figure 4.10, t = 10 seconds models the dynamics as nearly

constant velocity. Note that this model gives almost identical results as the FOGMA

nearly-constant-velocity model of Figure 4.4. In Figure 4.11, t = 0.01 seconds models the

dynamics as nearly constant position. This model is most effective during times of small,

slow movements. It also tends to smooth the displayed image by filtering out

measurement noise. But, it shows a lag very near what the system would experience with

no predictor at all. Figure 4.12 shows a FOGMV filter with an intermediate time constant

of -= 1.0 seconds. Close comparison of Figures 4.10 and 4.12 show, as expected, the

larger -r of Figure 4.10 results in less lag and more overshoot. Figure 4.13 shows that
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holding T constant (compared to that of Figure 4.12) and decreasing Y degrades the

performance of the filter (a = 0.45 was chosen since it is close to Liang's non-adaptive

FOGMV value). This is the same effect discussed in the previous section. Note that the

best a value for the FOGMV model (a = 0.45) is much smaller than the best Y value for

the FOGMA model (a = 5.0). There are two explanations for the difference in a values.

First, accelerations have larger magnitudes than velocities (see Figure 4.1). Second, the

FOGMV model may be more accurate over the entire range of head motion. A more

accurate model requires less tuning noise.

4.5 MMAE Design

The MMAE attempts to form the best possible prediction by taking a properly

weighted average of the elemental filter predictions. If, at a particular time, ti, filter 1 has

an error of -5 degrees, filter 2 has an error of -3 degrees and filter 3 has an error of -2

degrees, then the best possible MMAE solution is to have all the probability weight on

filter 3, resulting in an error of -2 degrees. If the elemental filters bracket the true look-

angle (one has a positive error and another has a negative error) an ideal solution would

blend the two predictions to get the exact answer. Practically, it is impossible to know a

priori, what the correct weighting will be for a given time. The appropriate weighting for

a prediction at time ti must be based on the information available at ti-. With this

information designers can look at the performance of individual elemental filters when

choosing the specific elemental filters to be incorporated into an MMAE. The best

combination would be filters which consistently complement each other. That is, any

possible head motion could be accurately modelled by a weighted average of the elemental
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filters. Since all predictors display lag, to different extents, it is impossible to bracket the

true look-angle at all times.

The first step in designing an MMAE consisting of three FOGMA elemental filters

is to look at the performance of the individual filters. The filter of Figure 4.5 gives the

best performance over almost the entire range of motions. It consistently displays less lag

and equal or less overshoot than any of the other FOGMA filters. For this reason, it

would most likely be unproductive to put another FOGMA elemental filter into an MMAE

with the filter of Figure 4.5.

From inspection of the FOGMV elemental filters' performances (Figures 4.10

through 4.13), it appears a bank of FOGMV filters may outperform any single FOGMV.

The nearly-constant-position filter of Figure 4.11 gives excellent performance during

benign motion (t = 4.0 through 8.0 seconds and t = 16.2 through 19.0 seconds), but when

there is any significant motion, it displays a lag of one full sample period. The nearly-

constant-velocity filter of Figure 4. 10 removes significant amounts of lag, compared to the

nearly-constant-position filter (t = 8.5 through 15.5 seconds), but suffers from overshoot.

Combining these two filters properly, along with a filter having characteristics between the

constant-velocity and constant-position models, in an MMAE should give better results

than those obtained from either filter operating alone. Figure 4.14 shows the output of an

MMAE using three FOGMV elemental filters. Comparing Figure 4.14 to Figures 4.10

and 4.11 shows that the MMAE yields less lag than the nearly-constant-position filter and

less overshoot than the nearly-constant-velocity filter. The lags when the look-angle
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Figure 4.14(b)
Probability Weighting of 3-FOGMV MMAE.

transitions from zero velocity are caused by the dynamics noise strength, related directly

to a, on filter one (nearly-constant-position) being low relative to the measurement noise

variance, R, I. When the heading is stable (zero velocity), filter one absorbs all the

probability. When motion starts, the MMAE is slow to recognize the motion as more than

just noise. Once motion is established, filter one quickly loses probability. Further tuning

may reduce overshoots. Instead of following this path, this research aimed to reduce lag

further, necessating an elemental filter with smaller lag characteristics than achievable with

the FOGMV model.

Before discussing mixed MMAEs (MMAEs with combinations of FOGMV,

FOGMA, and "(I') filters), it is worth mentioning two characteristics of this research.

Both of these problems, as discussed in Sections 4.6 and 4.7, affect any MMAE design for

virtual displays.

4.6 Spike Phenomena

Some tunings of the MMLAE using three filters displayed a visually disconcerting

characteristic dubbed the "spike phenomena". When an observer, using a virtual display,
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rapidly changes directions of head motion, the displayed image adjusts to the motion (with

some lag and overshoot discussed earlier). A few sample periods after the change in

direction, the displayed image makes a jump change back toward the look-angle where the

change in direction took place. The image then returns to its previous trajectory. The
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Figure 4.15 (c)
"Spike Phenomena." Demonstrated using 3 FOGMV elemental filters, having time
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reason for this phenomena is shown in Figure 4.15. Figure 4.15(a) shows that, at t = 13.5

seconds, heading velocity changes direction, from positive to negative. Figure 4.15(b)

shows that, at this time, all three filters were undershooting the actual look-angle. That is,

as the magnitude of the look-angle increased, the prediction of the magnitude was too

small. When the direction of motion changes, each filter estimate transitions from an

undershoot to an overshoot. As this happens, the residual of each filter changes sign. If

the MMAE contains one filter with a much larger time constant than the other two, the

residuals of the filter with the large time constant (slow reaction time) will cross the zero

axis much later than the residuals of the other filters. At the sampling time when the

slower filter is crossing the zero axis, the magnitude of the slow filter's residual is much

smaller than the residuals of the faster filters. The MMAE will shift the majority of its

probability to the slower filter (Figure 4.15c), and the image will jump to the estimate

made by the slower filter. With time, the slow filter residuals continue to increase in

magnitude and the MMAE shifts the probability back to the filters with smaller time

constants. Users consistently complained when they experienced the spike phenomena.

Any design that produced any significant spike phenomena was considered unusable.

4.7 Interaction of Heading and Pitch

In this research a single MMAE weights the filter predictions based on the residual

vector r(ti). The head tracker outputs a unit vector in Cartesian coordinates [x, y, z]

pointing in the direction the head is looking. Heading is computed from the x and y

components of the vector (heading = tan(x/y)). Pitch depends only on the z component
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(pitch = sin z). However, the weighting of filter outputs depends on the total residual. If

the heading is changing rapidly (driving the MMAE to weight the most aggressive filter)

and pitch is changing slowly (driving the MMAE to weight the most benign filter), the

final weighting will tend to be too aggressive for the pitch prediction and not aggessive

enough for the heading prediction. Figure 4.16 shows the predictions made by a 3-

FOGMV MMAE for both heading and pitch over the same time period. Since heading

uses two of the three vector components, heading predictions tend to be more accurate

than pitch predictions. But, the predictions in both axes are degraded from the best
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Comparison of Pitch and Heading predictors.
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performance achievable (by considering heading and pitch channels separately in the

MMAE). Solutions to this problem are discussed in Chapter 5.

4.8 Mixed MMAE Designs

To gain the advantages of the "(D2 filter" (a FOGMA filter using the square of the

state transition matrix to propagate a single sample period) and reduce or eliminate the

ringing, the "2 filter" can be combined with Liang's filter in an MMAE. Figure 4.17

shows an initial attempt to combine the two filters into an MMAE. Notice that the ringing

is still present. Several other tunings, adjusting the dynamics noise strength (through the a

parameter) and time constants (t) for both filters, produced unsatisfactory ringing,

overshoot and/or lag.

To improve the results, a constant-position elemental filter was added to the

MMAE. The constant-position filter gives excellent results when the pilot's head is

motionless, or moving very slowly. Most importantly, it can absorb the probability (via

the Pk computations in the MMAE) while the ",D,2 filter" is ringing after a sudden stop,

since its residuals will be smaller than those of the ",D,2 filter" at such times.

Figure 4.18(a) shows the first attempt at using the three filters together in an

MMAE. The obvious problem here is the step changes in position which occur when the

constant-position filter is dominant (during benign motion, e.g., t = 1.0 through 3.0

seconds, and 8.0 through 12.0 seconds). This happens because the constant-position filter
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Probability Weighting of MMAE consisting of a constant-position, FOGMY, and "I, 'D2,

filter.

gives too much weighting to the model and not enough to the measurement. As a result,

even when the measurement indicates motion, the filter tends to choose the model's

prediction of no motion. To eliminate this problem, either the dynamics driving noise

strength can be increased (by increasing the a parameter), or the measurement noise

variance, R, can be decreased. In this research, Y was increased. This increases the

filter's weighting on the measurement and allows the constant position filter to dominate

the other two filters during the appropriate trajectories. In addition to

adjusting Y for the constant-position filter, the "D2 filter" was retuned to reduce the

overshoot (t = 20.0, 21.0 and, 23.0 seconds).

Figure 4.19 shows the final tuning of the MMAE and the best results obtained in

this research. Along with the noise values (Y and R) and time constant (c), notice the

divergence thresholds. When a filter's r(ti)A-1 (ti)r(ti) value exceeds its divergence

threshold, the filter is declared divergent. Its prediction is given zero weighting by the

MMAE and the position states of the divergent filter are replaced with the MMAE

position states computed without the divergent filter (this is called an elemental filter
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Probability Weighting of Final MMAE design.

"restart"). Since the constant-position filter has a relatively large lag (comparable to the

lag with no predictor at all), it is only effective when there is very little head motion. To

ensure the MMAE quickly discounts the constant-position filter's prediction when motion

begins, its divergence threshold is set very low. The result is that the constant-position

filter is being declared divergent and being restarted almost continuously, except when

head movements are very slow.

Notice that during benign motion, lag is almost completely eliminated (t = 0.5

through 6.5 seconds - the dotted line representing the MMAE prediction is obscured by

the solid line of the true path). During moderate motion, the performance is almost as

good (t = 8.0 through 14.0 seconds). The MMAE prediction oscillates about the true

path with errors much smaller than those of Liang's filter, and with overshoots much less

than 5 degrees. In fact, the MMAE gives a smaller error than Liang's filter throughout the

period of moderate motion except for individual sample periods when Liang's filter

overshoots the true path later than the MMAE (t = 9.0, 13.4 seconds). During very rapid

head motion (reacquisition: t = 19.0 through 24.5 seconds), after an initial overshoot (t =
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20.2 seconds), the MMAE performs very much like Liang's filter. It is important to note

that the MMAE could be tuned to reduce lag during the reacquisition phase further by

forcing more probability to the "D2 filter", but that would increase overshoots. Instead,

the MMAE was tuned to demonstrate lag could be significantly reduced during benign and

moderate head motion (i.e., during tracking tasks by the pilot, when fidelity of simulation

is most important, rather than during aggressive and short-term head motions

representative of acquiring a new target), without a significant increase in the overshoots

(compared to Liang's nonadaptive Kalman filter) or degredation in performance during

reacquisition motions.

Table 4.1 compares the overshoot and lag performance of the MMAE, Liang's

nonadaptive filter and no predictor (one sample period lag). Each of the three types of

motion (benign, moderate and reacquisition) last six seconds, yielding 61 data points each.

The "% improvement row is a measure of the improvement relative to no predictor. This

table was generated by dividing each estimate into one of three categories: accurate (the

estimate was within 0.5 degrees of the true heading, as particularly between t = 3.7

seconds and t = 6.5 seconds), lag (the estimated heading trailed the true heading in time),

and overshoot (the estimate did not have a direct connection with a specific true heading,

such as at t = 23.0 seconds). Overshoot was calculated as the magnitude of the difference

between the predicted and true headings, giving all positive numbers. Lag was calculated

as the time between the true position reaching a heading and the predicted position

reaching that same heading (using linear interpolation between sample times to compute

the exact time when the estimate reached the same value as the actual heading at a given
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(earlier) sample time). Notice that the MMAE outperforms Liang's filter in every

category except overshoot in the Reacquisition phase. Also, note that the lag in the

MMAE varies much more than in Liang's design. The most dramatic improvement is in

the predictions of moderate motion. The MMAE gives 65% more points within the 0.5

degree "accurate" tolerance and a 75% reduction in lag points. To achieve this the

number of overshoot points increased, but the average overshoot is very small.

No Liang MMAE
Predictor

Benign Moderate Reacquisition Benign j Moderate Reacquisition

Lag _ __ _

Number of 61 9 33 39 1 8 41
1................................................................................. .................................................. .......................... ..................................
Average 0.1 0.058 0.058 0.059 0.048 0.030 0.051

lag
(seconds) , _

% 42 42 41 52 70 49
improve-

ment _ __

Overshoot _ _ _ _

Number of 0 0 2 10 1 1 10 12
overshoots i........... er a.. ....... ..... ........ ................... .... ........... ............. "......... .................................. ................ .......... ..... ....... : ................ "........... ..

average 0 0 1.37 2.98 0.65 1.12 3.75
overshoot
(degrees) _ _ _ _

Number of 47(benign) 52 26 12 59 43 8
predictions 15(moderate)

within 0.5 14 (reacquisi-

degrees tion)

(out of a
possible

61)

Table 4.1
Comparison of lag and overshoot between MMAE, Liang's nonadaptive filter and no

predictor.
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Table 4.2 compares the temporally average and maximum error magnitudes (i.e.,

error absolute values) of the three designs. The MMAE gives the best improvements

during benign and moderate motion (substantially better than those of Liang's filter), but

even during reacquisiton motion the MMAE gives substantial error reduction. The largest

errors occur during periods of lag, not during overshoot.

4.9 Extending the Predictions

Since this research is intended to be independent of a specific sampling time, it is

worth noting the performance of the final design when it predicts over longer periods. As

expected, extending look-angle predictions further into the future increases the error. Fig

4.20 shows the results of predicting 200 msec (2 sample periods) into the future.

Overshoots are more common and larger than seen in the corresponding results of Figure

4.19 for the case of predicting 100 msec (1 sample period) instead. The 200 msec

prediction is what some researchers used in their virtual environment. The most

troublesome part of the errors was the lag when motion reversed direction. It is evident

from Figure 4.20 that the MMAE would need a significantly different tuning to be used

for 2-sample-period predictions.

4.10 Summary

This chapter showed the development of an MMAE to reduce lag in virtual

displays. The final MMAE design clearly outperformed Liang's single nonadaptive

Kalman filter predictor. The MMAE can be tuned to acheive the best trade-off between

good lag reduction and undesirable overshoot.
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Average lerrorl for each type of No Predictor Liang MMAE
motion
(degrees)
benign 0.34 0.23 0.167
moderate 1.68 0.99 0.57
reacquisition 5.90 4.05 3.42
average 2.64 1.76 1.39
% improvement
(compared to no predictor)
benign 33.5 50.7
moderate 40.9 65.8
reacquisition 31.3 42.0
average over all 3 types of motion 33.4 47.4
Maximum error (degrees)
benign 1.47 1.00 0.71
moderate 6.48 5.06 3.11
reacquisition 24.93 21.22 20.27
% improvement
(compared to no predictor)
benign 31.6 51.9
moderate 21.9 51.9
reacquisition 14.9 18.7

Table 4.2
Comparison of performance of MMAE with Liang's nonadaptive filter and no predictor.
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5. Conclusions and Recommendations

This chapter presents the conclusions drawn from the results of Chapter 4. This is

followed by recommendations for future research.

5.1 Conclusions
Multiple Model Adaptive Estimation has been shown to reduce lag significantly in

virtual displays. It results in less lag than the single nonadaptive Kalman filter designed by

Liang [12] and its overshoot characteristics show a slightly larger magnitude, but equal

duration (usually one sample period). The improved performance is most dramatic during

benign and moderate head motion, i.e., for the tracking most common in virtual

environment simulations. During abrupt reacquisition motions, the MMAE still

significantly reduces lag, but at the expense of overshoot and some ringing. Various

design schemes showed different amounts of lag and overshoot, but all except the constant

position filter displayed both lag and overshoot. Lag cannot be eliminated without a priori

information about future head motion. Overshoot is inherent in any predictive scheme,

especially when position is being predicted based only upon position measurements

(velocity and acceleration are not currently measureable).

Motion estimations in each axis (pitch and heading) interfered with each other.

The residuals for heading and pitch contribute to decisions about the type of motion

present (benign, tracking, or reacquisition). This implies that both heading and pitch are

experiencing the same type of motion. In reality, heading and pitch change independently.

For example, consider a pilot tracking a nearby target on the ground from low altitude.

His look-angle heading will change rapidly as he flies past the target, looking to the side to
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see the target and then straight ahead to clear his path. During this same time his look-

angle pitch will change very little. The MMAE will form a single estimation of look-angle

dynamics which will be a compromise between what is needed for pitch and heading

predictions.

MMAE can be very helpful if a single sample period overshoot is acceptable. It

seems overshoot is unavoidable in a predictive algorithm based only on position

measurements. A single filter cannot model all the look-angle trajectories typical of a

single simulator mission. Adaptive schemes (such as MMAE) cannot change models until

after elemental filter residuals reveal the need for an altered hypothesis (i.e., a different

elemental filter appropriately gaining the highest probability weighting). The MMAE in

this research responded to changing dynamics in a single sample period (as quickly as

possible) and drove the prediction error to nearly zero. Higher sampling rates have two

advantages during times of changing dynamics. First, overshoot errors have smaller

magnitude. Second, the overshoot error is displayed for a shorter period. If the sampling

rate is high enough to make a single sample period overshoot imperceivable, or at least

acceptable to the user, MMAE can greatly enhance head-mounted visual displays by

reducing lag. The lag from an MMAE varies. It is unclear how variable lag, overshoot

and oscillation affect the realism of virtual displays or how well training using such

displays will transfer to the actual task.
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5.2 Recommendations
This thesis has explored the advantages and disadvantages of MMAE used to

reduce lag in a virtual environment flight simulator. Significant research remains to be

done. Based on the lessons learned from this thesis work, the following recommendations

are made:

1. Use a separate estimator for each axis. The problem of using a single estimator for two

axes was demonstrated in the previous section, 5.1. To overcome this problem, a separate

MMAE might be used for each axis. The MMAE for each axis will require slightly less

computation since it is only taking measurements and making predictions for one axis.

The total computation would be greater since two full MMAE's with separate filter banks

will be needed. Ideally, these MMAE's will run in parallel, making the separate axis

structure run faster than the single MMAE structure used in this research. This parallel

structure will also simplify the addition of a roll axis to account for head tilt.

2. Test subjects to find the effect of overshoot, oscillation, and lag. If these effects can be

quantified, an MMAE can be tuned to give the best overall result. This will guide

designers in the future as they are faced with making trade-offs between these errors.

3. Possibly try cL-13 and -13-,y filters [6] to reduce computational loading further. The ca-D3

and a-p-y filters are simpler than the FOGMV and FOGMA filters, respectively, thus

reducing the on-line computational loading. However, they will also give lower

performance than the the FOGMV and FOGMA filters. This trade-off should be
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investigated.

The a-13-y filter uses a precomputed filter gain K and the same dynamics as the

FOGMA filter in the limit as t goes to infinity. Said another way, the filter assumes that

constant acceleration paths provide good descriptions of the look-angles being predicted.

It also assumes complete independence of the spatial coordinates in the filter update

equation. That is, heading is unrelated to pitch. The a-f3-Py filter requires less on-line

computation than the FOGMA filter at the cost of providing a less accurate model.

The x-P3 filter uses the same assumptions as the t-13-y model, with the additional

assumption that acceleration is zero. It employs essentially a constant velocity model, and

is related to the FOGMV in the limit as 1/t goes to zero.

4. Measure acceleration data as well as position data about head motion. Being able to

measure acceleration would greatly enhance filtering and prediction accuracy. In this

research, acceleration could only be computed by differentiating position information

twice, using 3 measurements taken over a 200 msec period. The final computation is an

average acceleration over the 200 msec period. This may be a poor indication of

acceleration over the next sample period. Further, differentiating tends to amplify noise.

Taking two derivatives greatly amplifies noise and degrades accuracy of the acceleration

calculation. Measuring acceleration directly from accelerometers mounted on a helmet or

head mounted display will give an indication of instantaneous acceleration and would be

free of the noise amplification caused by differentiation.

Having acceleration measurements available may change the models used in the

predictive filters (although initially one would design filters based on the same dynamics
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models as developed in this research, but with augmented measurement models of both

positions and accelerations). In any event, the MMAE will still be a viable technique to

form the best prediction possible.
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